Data Import & Loading

Functions to load NULISAseq XML files and sample metadata

importNULISAseq()

Import and Process Multiple NULISAseq Runs

loadNULISAseq()

Read NULISAseq XML, perform normalization, and QC

readNULISAseq()

Read NULISAseq XML

readCovariates()

Read Covariates from XML File

readCovariateFile()

Read Covariate file and add to NULISAseq object

Data Normalization

Normalize proteomic data using internal controls (IC) and inter-plate controls (IPC)

intraPlateNorm()

NULISAseq Intra-Plate Normalization

interPlateNorm()

NULISAseq Inter-Plate Normalization

intraCV()

Calculate Intra-plate Coefficients of Variation

interCV()

Calculate Inter-plate Coefficients of Variation

Quality Control

Quality control criteria, flagging, and reporting functions

render_QC_report()

Render NULISAseq QC HTML Report

QCSampleCriteria()

QCSampleCriteria

QCPlateCriteria()

QCPlateCriteria

QCTargetCriteria()

QCTargetCriteria

QCFlagSample()

Write Sample QC table

QCFlagPlate()

Write Plate QC table

QCFlagTarget()

Write Target QC table

sampleQCplot()

Creates Plots Showing Sample-Specific Quality Control Metrics

targetQCplot()

Generate a Target QC Plot

QCplateHeatmap()

Generate plate heatmaps showing values relative to plate median

plateSummary()

NULISAseq Plate Summary

Protein Metrics

Calculate protein detection rates, quantification metrics, and quality measures

detectability()

Calculate Detectability for a Set of Targets and Samples

detectability_summary()

Summarize Detectability Across Multiple Runs and Sample Groups

quantifiability()

Calculate Quantifiability for Each Target for a Set of AQ Runs

lod()

Calculate Limits of Detection

CV_AQ()

Calculate Coefficient of Variation for Each Target for a Set of AQ Runs

CV_AQ_Hist()

Make a CV Histogram for AQ Data

Statistical Analysis

Differential expression testing and predictive modeling functions

lmNULISAseq()

Linear Regression Model for NULISAseq Data - targets as outcome

lmerNULISAseq()

Linear Mixed Effect Model for NULISAseq Data - targets as outcome

lmNULISAseq_predict()

Linear Regression Model for NULISAseq Data - targets as predictors

lmerNULISAseq_predict()

Linear Mixed Effect Model for NULISAseq Data - targets as predictor

glmNULISAseq_predict()

Generalized Linear Model for NULISAseq Data - targets as predictors

glmerNULISAseq_predict()

Generalized Linear Mixed Effects Model for NULISAseq Data - targets as predictors

permutation_anova()

Permutation-Based ANOVA with Post-Hoc Pairwise Comparisons

Visualization

Create plots for exploratory analysis and publication-quality figures

volcanoPlot()

Volcano plot for NULISAseq differential expression test

sampleBoxplot()

Generate Sample Distribution Boxplots

targetBoxplot()

Target Boxplot

generate_heatmap()

Generate Heatmap for NULISAseq Data with ComplexHeatmap

generate_pca()

Generate PCA Biplot for NULISAseq Data with PCAtools

plateHeatmap()

Draw Plate Heatmap

plot_plateLayout()

Plot Plate Layout with Well Type Coloring

spaghetti_plot()

Spaghetti plot for visualizing longitudinal NULISAseq data

quantHist()

Make a Quantifiability Histogram

Data Export

Write NULISAseq data and QC information to files

writeNULISAseq()

Write NULISAseq data in long format Excel file

writeUpdatedXML()

Write Updated XML

QC2XML()

Write Processed XML from QC table

XML Processing Utilities

Low-level functions for XML file manipulation

getXMLVersion()

Get XML Version from XML File

insertCovariatesXML()

Inserts Covariates into XML

readQCXMLNode()

Parse QC XML Nodes into a Data Frame

readQCThresholdXMLNode()

Read and Parse QC Attributes from XML Nodes

readXML_remove_duplicate_attributes()

Read and Parse XML, Removing Duplicate Attributes

removeBarcodeAndSamples()

Removes BarcodeB nodes with a specified attribute and their associated Sample nodes.

splitXML()

Split XML file based on attribute and create a ZIP archive

Helper Functions

Utility functions for data processing and visualization

alamarColorPalette()

Make color palette based on Alamar colors

calcSampleTargetNAs()

Identify Missing Target Entries in Sample Curves

column_summary_stats()

Generate Summary Statistics for Columns of a Matrix or Data Frame

fill_predictors()

Fill missing predictors with NA values

numSCs()

Calculate the number of SCs (Sample Controls) in the dataset

outliers_mad()

Detect Outliers using MAD (Median Absolute Deviation)

renameDuplicateNames()

Rename Duplicates in a List with Incrementing Values

renameSC()

Rename Sample Controls (SC) and Absolute Quantification Sample Controls (AQSC)

safe_extract_matrix()

Safely extract and combine model statistics into a matrix

typeSummary()

Well Type Summary

Package Documentation

Package-level documentation

NULISAseqR

NULISAseqR Package